
Think Stats

Exploratory Data Analysis in Python

Version 2.0.30

Chapter 14

Analytic methods

This book has focused on computational methods like simulation and re-
sampling, but some of the problems we solved have analytic solutions that
can be much faster.

I present some of these methods in this chapter, and explain how they work.
At the end of the chapter, I make suggestions for integrating computational
and analytic methods for exploratory data analysis.

The code in this chapter is in normal.py. For information about download-
ing and working with this code, see Section 0.2.

14.1 Normal distributions
As a motivating example, let’s review the problem from Section 8.3:

Suppose you are a scientist studying gorillas in a wildlife pre-
serve. Having weighed 9 gorillas, you find sample mean x̄ = 90
kg and sample standard deviation, S = 7.5 kg. If you use x̄ to
estimate the population mean, what is the standard error of the
estimate?

To answer that question, we need the sampling distribution of x̄. In Sec-
tion 8.3 we approximated this distribution by simulating the experiment
(weighing 9 gorillas), computing x̄ for each simulated experiment, and ac-
cumulating the distribution of estimates.

The result is an approximation of the sampling distribution. Then we use
the sampling distribution to compute standard errors and confidence inter-
vals:

200 Chapter 14. Analytic methods

1. The standard deviation of the sampling distribution is the standard
error of the estimate; in the example, it is about 2.5 kg.

2. The interval between the 5th and 95th percentile of the sampling dis-
tribution is a 90% confidence interval. If we run the experiment many
times, we expect the estimate to fall in this interval 90% of the time. In
the example, the 90% CI is (86, 94) kg.

Now we’ll do the same calculation analytically. We take advantage of
the fact that the weights of adult female gorillas are roughly normally
distributed. Normal distributions have two properties that make them
amenable for analysis: they are “closed” under linear transformation and
addition. To explain what that means, I need some notation.

If the distribution of a quantity, X, is normal with parameters µ and σ, you
can write

X ∼ N (µ, σ2)

where the symbol ∼ means “is distributed” and the script letter N stands
for “normal.”

A linear transformation of X is something like X′ = aX + b, where a and
b are real numbers. A family of distributions is closed under linear trans-
formation if X′ is in the same family as X. The normal distribution has this
property; if X ∼ N (µ, σ2),

X′ ∼ N (aµ + b, a2σ2) (1)

Normal distributions are also closed under addition. If Z = X + Y and
X ∼ N (µX, σ2

X) and Y ∼ N (µY, σ2
Y) then

Z ∼ N (µX + µY, σ2
X + σ2

Y) (2)

In the special case Z = X + X, we have

Z ∼ N (2µX, 2σ2
X)

and in general if we draw n values of X and add them up, we have

Z ∼ N (nµX, nσ2
X) (3)

14.2. Sampling distributions 201

14.2 Sampling distributions

Now we have everything we need to compute the sampling distribution of
x̄. Remember that we compute x̄ by weighing n gorillas, adding up the total
weight, and dividing by n.

Assume that the distribution of gorilla weights, X, is approximately normal:

X ∼ N (µ, σ2)

If we weigh n gorillas, the total weight, Y, is distributed

Y ∼ N (nµ, nσ2)

using Equation 3. And if we divide by n, the sample mean, Z, is distributed

Z ∼ N (µ, σ2/n)

using Equation 1 with a = 1/n.

The distribution of Z is the sampling distribution of x̄. The mean of Z is
µ, which shows that x̄ is an unbiased estimate of µ. The variance of the
sampling distribution is σ2/n.

So the standard deviation of the sampling distribution, which is the stan-
dard error of the estimate, is σ/

√
n. In the example, σ is 7.5 kg and n is 9, so

the standard error is 2.5 kg. That result is consistent with what we estimated
by simulation, but much faster to compute!

We can also use the sampling distribution to compute confidence intervals.
A 90% confidence interval for x̄ is the interval between the 5th and 95th per-
centiles of Z. Since Z is normally distributed, we can compute percentiles
by evaluating the inverse CDF.

There is no closed form for the CDF of the normal distribution or its inverse,
but there are fast numerical methods and they are implemented in SciPy, as
we saw in Section 5.2. thinkstats2 provides a wrapper function that makes
the SciPy function a little easier to use:

def EvalNormalCdfInverse(p, mu=0, sigma=1):

return scipy.stats.norm.ppf(p, loc=mu, scale=sigma)

Given a probability, p, it returns the corresponding percentile from a normal
distribution with parameters mu and sigma. For the 90% confidence interval
of x̄, we compute the 5th and 95th percentiles like this:

202 Chapter 14. Analytic methods

>>> thinkstats2.EvalNormalCdfInverse(0.05, mu=90, sigma=2.5)

85.888

>>> thinkstats2.EvalNormalCdfInverse(0.95, mu=90, sigma=2.5)

94.112

So if we run the experiment many times, we expect the estimate, x̄, to fall in
the range (85.9, 94.1) about 90% of the time. Again, this is consistent with
the result we got by simulation.

14.3 Representing normal distributions

To make these calculations easier, I have defined a class called Normal that
represents a normal distribution and encodes the equations in the previous
sections. Here’s what it looks like:

class Normal(object):

def __init__(self, mu, sigma2):

self.mu = mu

self.sigma2 = sigma2

def __str__(self):

return 'N(%g, %g)' % (self.mu, self.sigma2)

So we can instantiate a Normal that represents the distribution of gorilla
weights:

>>> dist = Normal(90, 7.5**2)

>>> dist

N(90, 56.25)

Normal provides Sum, which takes a sample size, n, and returns the distribu-
tion of the sum of n values, using Equation 3:

def Sum(self, n):

return Normal(n * self.mu, n * self.sigma2)

Normal also knows how to multiply and divide using Equation 1:

def __mul__(self, factor):

return Normal(factor * self.mu, factor**2 * self.sigma2)

def __div__(self, divisor):

return 1 / divisor * self

14.4. Central limit theorem 203

So we can compute the sampling distribution of the mean with sample size
9:

>>> dist_xbar = dist.Sum(9) / 9

>>> dist_xbar.sigma

2.5

The standard deviation of the sampling distribution is 2.5 kg, as we saw in
the previous section. Finally, Normal provides Percentile, which we can
use to compute a confidence interval:

>>> dist_xbar.Percentile(5), dist_xbar.Percentile(95)

85.888 94.113

And that’s the same answer we got before. We’ll use the Normal class again
later, but before we go on, we need one more bit of analysis.

14.4 Central limit theorem

As we saw in the previous sections, if we add values drawn from normal
distributions, the distribution of the sum is normal. Most other distributions
don’t have this property; if we add values drawn from other distributions,
the sum does not generally have an analytic distribution.

But if we add up n values from almost any distribution, the distribution of
the sum converges to normal as n increases.

More specifically, if the distribution of the values has mean and standard
deviation µ and σ, the distribution of the sum is approximatelyN (nµ, nσ2).

This result is the Central Limit Theorem (CLT). It is one of the most useful
tools for statistical analysis, but it comes with caveats:

• The values have to be drawn independently. If they are correlated, the
CLT doesn’t apply (although this is seldom a problem in practice).

• The values have to come from the same distribution (although this
requirement can be relaxed).

• The values have to be drawn from a distribution with finite mean and
variance. So most Pareto distributions are out.

• The rate of convergence depends on the skewness of the distribution.
Sums from an exponential distribution converge for small n. Sums
from a lognormal distribution require larger sizes.

204 Chapter 14. Analytic methods

The Central Limit Theorem explains the prevalence of normal distributions
in the natural world. Many characteristics of living things are affected by
genetic and environmental factors whose effect is additive. The character-
istics we measure are the sum of a large number of small effects, so their
distribution tends to be normal.

14.5 Testing the CLT

To see how the Central Limit Theorem works, and when it doesn’t, let’s try
some experiments. First, we’ll try an exponential distribution:

def MakeExpoSamples(beta=2.0, iters=1000):

samples = []

for n in [1, 10, 100]:

sample = [np.sum(np.random.exponential(beta, n))

for _ in range(iters)]

samples.append((n, sample))

return samples

MakeExpoSamples generates samples of sums of exponential values (I use
“exponential values” as shorthand for “values from an exponential distri-
bution”). beta is the parameter of the distribution; iters is the number of
sums to generate.

To explain this function, I’ll start from the inside and work my way out.
Each time we call np.random.exponential, we get a sequence of n expo-
nential values and compute its sum. sample is a list of these sums, with
length iters.

It is easy to get n and iters confused: n is the number of terms in each
sum; iters is the number of sums we compute in order to characterize the
distribution of sums.

The return value is a list of (n, sample) pairs. For each pair, we make a
normal probability plot:

def NormalPlotSamples(samples, plot=1, ylabel=''):

for n, sample in samples:

thinkplot.SubPlot(plot)

thinkstats2.NormalProbabilityPlot(sample)

thinkplot.Config(title='n=%d' % n, ylabel=ylabel)

plot += 1

14.5. Testing the CLT 205

su
m

 o
f e

xp
o

va
lu

es

n=1

su
m

 o
f e

xp
o

va
lu

es

n=10

su
m

 o
f e

xp
o

va
lu

es

n=100

su
m

 o
f l

og
no

rm
al

 v
al

ue
s

n=1

su
m

 o
f l

og
no

rm
al

 v
al

ue
s

n=10

su
m

 o
f l

og
no

rm
al

 v
al

ue
s

n=100

Figure 14.1: Distributions of sums of exponential values (top row) and log-
normal values (bottom row).

NormalPlotSamples takes the list of pairs from MakeExpoSamples and gen-
erates a row of normal probability plots.

Figure 14.1 (top row) shows the results. With n=1, the distribution of the
sum is still exponential, so the normal probability plot is not a straight line.
But with n=10 the distribution of the sum is approximately normal, and with
n=100 it is all but indistinguishable from normal.

Figure 14.1 (bottom row) shows similar results for a lognormal distribution.
Lognormal distributions are generally more skewed than exponential dis-
tributions, so the distribution of sums takes longer to converge. With n=10

the normal probability plot is nowhere near straight, but with n=100 it is
approximately normal.

Pareto distributions are even more skewed than lognormal. Depending on
the parameters, many Pareto distributions do not have finite mean and vari-
ance. As a result, the Central Limit Theorem does not apply. Figure 14.2
(top row) shows distributions of sums of Pareto values. Even with n=100

the normal probability plot is far from straight.

I also mentioned that CLT does not apply if the values are correlated. To
test that, I generate correlated values from an exponential distribution. The

206 Chapter 14. Analytic methods

su
m

 o
f P

ar
et

o
va

lu
es

n=1

su
m

 o
f P

ar
et

o
va

lu
es

n=10

su
m

 o
f P

ar
et

o
va

lu
es

n=100

su
m

 o
f c

or
re

la
te

d
ex

po
 v

al
ue

s

n=1

su
m

 o
f c

or
re

la
te

d
ex

po
 v

al
ue

s

n=10

su
m

 o
f c

or
re

la
te

d
ex

po
 v

al
ue

s

n=100

Figure 14.2: Distributions of sums of Pareto values (top row) and correlated
exponential values (bottom row).

algorithm for generating correlated values is (1) generate correlated normal
values, (2) use the normal CDF to transform the values to uniform, and (3)
use the inverse exponential CDF to transform the uniform values to expo-
nential.

GenerateCorrelated returns an iterator of n normal values with serial cor-
relation rho:

def GenerateCorrelated(rho, n):

x = random.gauss(0, 1)

yield x

sigma = math.sqrt(1 - rho**2)

for _ in range(n-1):

x = random.gauss(x*rho, sigma)

yield x

The first value is a standard normal value. Each subsequent value depends
on its predecessor: if the previous value is x, the mean of the next value is
x*rho, with variance 1-rho**2. Note that random.gauss takes the standard
deviation as the second argument, not variance.

14.6. Applying the CLT 207

GenerateExpoCorrelated takes the resulting sequence and transforms it to
exponential:

def GenerateExpoCorrelated(rho, n):

normal = list(GenerateCorrelated(rho, n))

uniform = scipy.stats.norm.cdf(normal)

expo = scipy.stats.expon.ppf(uniform)

return expo

normal is a list of correlated normal values. uniform is a sequence of uni-
form values between 0 and 1. expo is a correlated sequence of exponential
values. ppf stands for “percent point function,” which is another name for
the inverse CDF.

Figure 14.2 (bottom row) shows distributions of sums of correlated expo-
nential values with rho=0.9. The correlation slows the rate of convergence;
nevertheless, with n=100 the normal probability plot is nearly straight. So
even though CLT does not strictly apply when the values are correlated,
moderate correlations are seldom a problem in practice.

These experiments are meant to show how the Central Limit Theorem
works, and what happens when it doesn’t. Now let’s see how we can use it.

14.6 Applying the CLT

To see why the Central Limit Theorem is useful, let’s get back to the example
in Section 9.3: testing the apparent difference in mean pregnancy length for
first babies and others. As we’ve seen, the apparent difference is about 0.078
weeks:

>>> live, firsts, others = first.MakeFrames()

>>> delta = firsts.prglngth.mean() - others.prglngth.mean()

0.078

Remember the logic of hypothesis testing: we compute a p-value, which is
the probability of the observed difference under the null hypothesis; if it
is small, we conclude that the observed difference is unlikely to be due to
chance.

In this example, the null hypothesis is that the distribution of pregnancy
lengths is the same for first babies and others. So we can compute the sam-
pling distribution of the mean like this:

dist1 = SamplingDistMean(live.prglngth, len(firsts))

dist2 = SamplingDistMean(live.prglngth, len(others))

208 Chapter 14. Analytic methods

Both sampling distributions are based on the same population, which is
the pool of all live births. SamplingDistMean takes this sequence of values
and the sample size, and returns a Normal object representing the sampling
distribution:
def SamplingDistMean(data, n):

mean, var = data.mean(), data.var()

dist = Normal(mean, var)

return dist.Sum(n) / n

mean and var are the mean and variance of data. We approximate the dis-
tribution of the data with a normal distribution, dist.

In this example, the data are not normally distributed, so this approxima-
tion is not very good. But then we compute dist.Sum(n) / n, which is the
sampling distribution of the mean of n values. Even if the data are not nor-
mally distributed, the sampling distribution of the mean is, by the Central
Limit Theorem.

Next, we compute the sampling distribution of the difference in the means.
The Normal class knows how to perform subtraction using Equation 2:

def __sub__(self, other):

return Normal(self.mu - other.mu,

self.sigma2 + other.sigma2)

So we can compute the sampling distribution of the difference like this:
>>> dist = dist1 - dist2

N(0, 0.0032)

The mean is 0, which makes sense because we expect two samples from the
same distribution to have the same mean, on average. The variance of the
sampling distribution is 0.0032.

Normal provides Prob, which evaluates the normal CDF. We can use Prob

to compute the probability of a difference as large as delta under the null
hypothesis:
>>> 1 - dist.Prob(delta)

0.084

Which means that the p-value for a one-sided test is 0.84. For a two-sided
test we would also compute
>>> dist.Prob(-delta)

0.084

Which is the same because the normal distribution is symmetric. The sum of
the tails is 0.168, which is consistent with the estimate in Section 9.3, which
was 0.17.

14.7. Correlation test 209

14.7 Correlation test

In Section 9.5 we used a permutation test for the correlation between birth
weight and mother’s age, and found that it is statistically significant, with
p-value less than 0.001.

Now we can do the same thing analytically. The method is based on this
mathematical result: given two variables that are normally distributed and
uncorrelated, if we generate a sample with size n, compute Pearson’s corre-
lation, r, and then compute the transformed correlation

t = r
√

n− 2
1− r2

the distribution of t is Student’s t-distribution with parameter n− 2. The t-
distribution is an analytic distribution; the CDF can be computed efficiently
using gamma functions.

We can use this result to compute the sampling distribution of correlation
under the null hypothesis; that is, if we generate uncorrelated sequences
of normal values, what is the distribution of their correlation? StudentCdf

takes the sample size, n, and returns the sampling distribution of correla-
tion:

def StudentCdf(n):

ts = np.linspace(-3, 3, 101)

ps = scipy.stats.t.cdf(ts, df=n-2)

rs = ts / np.sqrt(n - 2 + ts**2)

return thinkstats2.Cdf(rs, ps)

ts is a NumPy array of values for t, the transformed correlation. ps contains
the corresponding probabilities, computed using the CDF of the Student’s
t-distribution implemented in SciPy. The parameter of the t-distribution,
df, stands for “degrees of freedom.” I won’t explain that term, but you
can read about it at http://en.wikipedia.org/wiki/Degrees_of_freedom_
(statistics).

To get from ts to the correlation coefficients, rs, we apply the inverse trans-
form,

r = t/
√

n− 2 + t2

The result is the sampling distribution of r under the null hypothesis. Fig-
ure 14.3 shows this distribution along with the distribution we generated in
Section 9.5 by resampling. They are nearly identical. Although the actual
distributions are not normal, Pearson’s coefficient of correlation is based on

210 Chapter 14. Analytic methods

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Student t
sample

Figure 14.3: Sampling distribution of correlations for uncorrelated normal
variables.

sample means and variances. By the Central Limit Theorem, these moment-
based statistics are normally distributed even if the data are not.

From Figure 14.3, we can see that the observed correlation, 0.07, is unlikely
to occur if the variables are actually uncorrelated. Using the analytic distri-
bution, we can compute just how unlikely:

t = r * math.sqrt((n-2) / (1-r))

p_value = 1 - scipy.stats.t.cdf(t, df=n-2)

We compute the value of t that corresponds to r=0.07, and then evaluate
the t-distribution at t. The result is 6.4e-12. This example demonstrates
an advantage of the analytic method: we can compute very small p-values.
But in practice it usually doesn’t matter.

14.8 Chi-squared test

In Section 9.7 we used the chi-squared statistic to test whether a die is
crooked. The chi-squared statistic measures the total normalized deviation
from the expected values in a table:

χ2 = ∑
i

(Oi − Ei)
2

Ei

One reason the chi-squared statistic is widely used is that its sampling
distribution under the null hypothesis is analytic; by a remarkable coinci-

14.8. Chi-squared test 211

0 5 10 15 20 25
chi-squared statistic

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

chi squared
sample

Figure 14.4: Sampling distribution of chi-squared statistics for a fair six-
sided die.

dence1, it is called the chi-squared distribution. Like the t-distribution, the
chi-squared CDF can be computed efficiently using gamma functions.

SciPy provides an implementation of the chi-squared distribution, which
we use to compute the sampling distribution of the chi-squared statistic:

def ChiSquaredCdf(n):

xs = np.linspace(0, 25, 101)

ps = scipy.stats.chi2.cdf(xs, df=n-1)

return thinkstats2.Cdf(xs, ps)

Figure 14.4 shows the analytic result along with the distribution we got by
resampling. They are very similar, especially in the tail, which is the part
we usually care most about.

We can use this distribution to compute the p-value of the observed test
statistic, chi2:

p_value = 1 - scipy.stats.chi2.cdf(chi2, df=n-1)

The result is 0.041, which is consistent with the result from Section 9.7.

The parameter of the chi-squared distribution is “degrees of freedom”
again. In this case the correct parameter is n-1, where n is the size of the
table, 6. Choosing this parameter can be tricky; to be honest, I am never
confident that I have it right until I generate something like Figure 14.4 to
compare the analytic results to the resampling results.

1Not really.

212 Chapter 14. Analytic methods

14.9 Discussion

This book focuses on computational methods like resampling and permu-
tation. These methods have several advantages over analysis:

• They are easier to explain and understand. For example, one of the
most difficult topics in an introductory statistics class is hypothesis
testing. Many students don’t really understand what p-values are. I
think the approach I presented in Chapter 9—simulating the null hy-
pothesis and computing test statistics—makes the fundamental idea
clearer.

• They are robust and versatile. Analytic methods are often based on
assumptions that might not hold in practice. Computational methods
require fewer assumptions, and can be adapted and extended more
easily.

• They are debuggable. Analytic methods are often like a black box: you
plug in numbers and they spit out results. But it’s easy to make subtle
errors, hard to be confident that the results are right, and hard to find
the problem if they are not. Computational methods lend themselves
to incremental development and testing, which fosters confidence in
the results.

But there is one drawback: computational methods can be slow. Taking into
account these pros and cons, I recommend the following process:

1. Use computational methods during exploration. If you find a satisfac-
tory answer and the run time is acceptable, you can stop.

2. If run time is not acceptable, look for opportunities to optimize. Using
analytic methods is one of several methods of optimization.

3. If replacing a computational method with an analytic method is ap-
propriate, use the computational method as a basis of comparison,
providing mutual validation between the computational and analytic
results.

For the vast majority of problems I have worked on, I didn’t have to go past
Step 1.

14.10. Exercises 213

14.10 Exercises

A solution to these exercises is in chap14soln.py

Exercise 14.1 In Section 5.4, we saw that the distribution of adult weights
is approximately lognormal. One possible explanation is that the weight a
person gains each year is proportional to their current weight. In that case,
adult weight is the product of a large number of multiplicative factors:

w = w0 f1 f2... fn

where w is adult weight, w0 is birth weight, and fi is the weight gain factor
for year i.

The log of a product is the sum of the logs of the factors:

log w = log w0 + log f1 + log f2 + ... + log fn

So by the Central Limit Theorem, the distribution of log w is approximately
normal for large n, which implies that the distribution of w is lognormal.

To model this phenomenon, choose a distribution for f that seems reason-
able, then generate a sample of adult weights by choosing a random value
from the distribution of birth weights, choosing a sequence of factors from
the distribution of f , and computing the product. What value of n is needed
to converge to a lognormal distribution?

Exercise 14.2 In Section 14.6 we used the Central Limit Theorem to find the
sampling distribution of the difference in means, δ, under the null hypoth-
esis that both samples are drawn from the same population.

We can also use this distribution to find the standard error of the estimate
and confidence intervals, but that would only be approximately correct. To
be more precise, we should compute the sampling distribution of δ under
the alternate hypothesis that the samples are drawn from different popula-
tions.

Compute this distribution and use it to calculate the standard error and a
90% confidence interval for the difference in means.

Exercise 14.3 In a recent paper2, Stein et al. investigate the effects of an in-
tervention intended to mitigate gender-stereotypical task allocation within
student engineering teams.

2“Evidence for the persistent effects of an intervention to mitigate gender-sterotypical
task allocation within student engineering teams,” Proceedings of the IEEE Frontiers in
Education Conference, 2014.

214 Chapter 14. Analytic methods

Before and after the intervention, students responded to a survey that asked
them to rate their contribution to each aspect of class projects on a 7-point
scale.

Before the intervention, male students reported higher scores for the pro-
gramming aspect of the project than female students; on average men re-
ported a score of 3.57 with standard error 0.28. Women reported 1.91, on
average, with standard error 0.32.

Compute the sampling distribution of the gender gap (the difference in
means), and test whether it is statistically significant. Because you are given
standard errors for the estimated means, you don’t need to know the sam-
ple size to figure out the sampling distributions.

After the intervention, the gender gap was smaller: the average score for
men was 3.44 (SE 0.16); the average score for women was 3.18 (SE 0.16).
Again, compute the sampling distribution of the gender gap and test it.

Finally, estimate the change in gender gap; what is the sampling distribu-
tion of this change, and is it statistically significant?

